
FOOD WEBS 

Most of this book has been concemed with horizontal linkages in plant and 
animal assemblages. In other words, patterns of species richness (Chapter 8), 
diversity (Chapters 2 and 3), co-occurrence (Chapters 7 and 9), resource utili- 
zation (Chapters 4 and S ) ,  and morphology (Chapter 6) of taxonomic or 
ecological guilds of species that potentially compete for resources and are thus 
at the same trophic level. Null models are an essential tool for delineating 
expected patterns in noninteractive assemblages of potential competitors. 

A different perspective on community structure emphasizes the vertical 
linkages, that is, the identities and interactions of predators and their prey in an 
assemblage. Food web diagrams that depict binary interactions of "who eats 
whom" (Figure 10.1) have a long history in ecology, dating back to Shelford 
(1913). These diagrams have prompted a number of interesting ecological 
questions. What determines the number of links in a food web, and how is this 
related to the number of species in the web? Are certain web topologies more 
mathematically or biologically stable than others? What determines the maxi- 
mum food chain length within a web? Does web structure vary systematically 
between terrestrial and aquatic habitats, or those with two- and three-dimen- 
sional structure? 

Although the literature on food webs and on the ecological niche has devel- 
oped somewhat independently, they are conceptually linked, because energetic 
constraints and prey availability are often the ultimate causes of niche diver- 
gence among competitors. For example, Hutchinson's (1959) seminal paper 
that suggested a constant size ratio between coexisting competitors (see Chap- 
ter 6) was primarily concerned with the way that energy flow ultimately 
constrains the total number of species in an assemblage. Assemblage patterns 
of qualitative niche overlap in diet can be directly equated with food web links. 
From food web diagrams, Cohen (1978) derived measures of niche overlap 
(and tested them against null models) that depicted the qualitative similarity in 
diet among a set of consumers at the same trophic level. Some of the detailed 
null models of food webs and biogeography are also similar. As an example, 
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Figure 10.1. A simple food web for a willow forest (Bird 1930). Arrows are directed 
from prey to predator. Dashed lines are tentative linkages. Numbers indicate "kinds" 
of organisms used in food web analyses. Simplified food webs such as this have 
formed the basis for many analyses of web structure. From Cohen, J. E. Food Webs 
and Niche Space. Copyright O 1978 by Princeton University Press. Reprinted by per- 
mission of Princeton University Press. 

Cohen's (1978) six randomization algorithms for food web matrices are very 
similar to some of Simberloff's (1978a) null model protocols for presence- 
absence matrices of co-occurring species. 

In spite of these similarities, the influence of null models on niche and food web 
studies has differed. In niche analyses, null models amved relatively late in the 

picture. By the time null models were used in niche overlap studies, theoretical 
principles were well established and explanations for assemblage patterns had 
often been uncritically accepted. Because null model tests often contradicted 
accepted interpretations of niche overlap pattems, they were highly controversial 

(see Chapters 4-7). 
Null models also challenged conventional wisdom in food web studies, 

although their use has been less contentious, perhaps because they appeared so 
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early in the food web literature (Stuart L. Pimm, personal communication). In 
particular, early null models (Gardner and Ashby 1970; May 1972) failed to 
gamer support for the popular contention that complexity of food webs leads to 
stability. 

Null models were also essential to the early analyses of empirical patterns in 
the food web literature (Cohen 1978; Pimm 1980a, 1982). For example, many 
published food webs have only two or three trophic links. In contrast, webs of 
the same size that are randomly connected typically have more than three links 
(Pimm 1980a). Null model analyses led to a catalog of food web patterns that 
did not seem to be a simple consequence of the number of species in the 
sample. Several recent studies have called these patterns into question (Sprules 
and Bowennan 1988; Martinez 1991; Polis 1991). However, this controversy 
surrounds the quality of the original data (Paine 1988), not the null models that 
were used to establish the patterns. 

This chapter provides a brief overview of the food web and stability litera- 
ture, as it relates to null models. For more extensive coverage, see Pimm (1982) 
and Pimm et al. (1991). We first describe the use of null models in the 
development of food web theory. Next, we describe analyses of published food 
web data, and the empirical generalizations that emerged from these studies. 
We then consnder null model analyses of community stability, as measured by 
the community matrix, and by temporal data on the rank abundances of species. 
Finally, we summarize some recent empirical controversies in the literature and 
suggest how null models might be applied in future food web studies. 

STABILITY ANALYSES OF MODEL FOOD WEBS 

Both Elton (1958) and MacArthur (1955) popularized the notion that com- 
plex ecological systems are more stable than simple systems. Elton (1958) 
summarized a diverse set of observations from mathematical, laboratory, 
and field studies to establish this idea. He noted that simple predator-prey 
models predicted fluctuating populations and concluded that more complex 
models would lead to stable populations. He also pointed to laboratory 
experiments, such as Gause's (1934), which demonstrated how difficult it 
was to achieve stable coexistence of predators and prey. Turning to field 
systems, Elton (1958) argued that invasions and outbreaks of pest species 
were much more common in agricultural systems that had been modified 
and simplified by human activity. He also suggested that insect outbreaks 
were characteristic of simple temperate forests but not of complex tropical 
forests (but see Wolda 1978). 



Elton (1958) described several measures of "stability": ( I )  a tendency for 
populations to return to an equilibrium value when perturbed; (2) a small 
variance in population size; (3) the ability of an assemblage to resist invasion; 
and (4) the change in populations of an assemblage following an invasion. By 
"complexity," Elton (1958) meant both the number of species in the web and 
the number of links in the web (connectance). Much of the confusion over the 
relationship between stability and complexity arose because there are many 
ways that ecological and mathematical stability can be defined, and because 
the relationship between stability and complexity depends critically on how 
these definitions are constructed (Pimm 1984b). 

MacArthur's (1955) approach was more mathematical and formal than 
Elton's (1958). By stability, MacArthur (1955) meant the degree to which 
species abundances changed when the abundance of one species in the web 
was greatly perturbed. His argument was that complex systems with many 
different pathways for energy flow were more stable than systems with few 
pathways. For example, if the population of a single prey species is reduced, a 
polyphagous predator can shift to alternative prey. Therefore, webs with poly- 
phagous predators should be relatively stable. In contrast, webs with monoph- 
agous predators should be less stable, because perturbations in prey abundance 
will cause more violent fluctuations in predator abundance. 

MacArthur (1955) proposed two hypotheses for community stability. First, 
biotic interactions among the species in the web can impart stability. This 
hypothesis underlies mathematical analyses of food web structure and provides 
a justification for the use of the Lotka-Volterra equations and the corresponding 
community matrix (Levins 1968). The Lotka-Volterra equations are the sim- 
plest first-order differential equations that describe painvise interspecific inter- 
actions. Interactions such as predation, competition, and mutualism among 
species pairs can be modeled by setting interaction coefficients to positive or 
negative values. The community matrix contains all these interaction terms, 
plus terms for self-limitation of each species along the diagonal of the matrix. 

MacArthur's (1955) second hypothesis was that stability of the food web 
"can be intrinsic to the individual species." An assessment of this hypothesis 
ultimately requires knowledge of abiotic factors and physiological limitations 
to population growth of each species. MacArthur's (1955) second hypothesis 
acknowledges that food web stability may not be a biological property of 
interactions among species, but of the interaction of species with their physical 
environment. 

In this view, food web patterns are an epiphenomenon, a secondary reflec- 
tion of the habitat and abiotic factors that allow sets of species to persist 
together. Although this hypothesis does not deny the interaction of predators 
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and their prey, it does imply that trophic and competitive interactions do not 
determine the stability of the system. In fact, food webs for some real commu- 
nities do seem to be mathematically unstable (Auerbach 1979). MacArthur 
(1955) did not develop his second hypothesis any further, but it stands as an 
excellent null hypothesis for the study of food webs. 

Random Connectance: An Early Food Web Null Model 

The hypothesis that stability begets complexity corresponds to the naturalist's 
intuition about the "balance of nature" (Pimm 1991). Perhaps for this reason, 
the stability-complexity hypothesis was accepted uncritically until the early 
1970s, beginning with the publication of a brief, but important, paper by 
Gardner and Ashby (1970). They were concerned with the stability and organi- 
zation of large, complex systems, such as airports, human brains, and urban 
slums. They began with a matrix of painvise interaction coefficients for sys- 
tems of four, seven, and 10 variables. For a noninteractive system, they first set 
all off-diagonal elements to zero, and then assigned a random negative number 
to the diagonals of the matrix. If the diagonal elements are negative, the system 
is locally stable to small perturbations because each component is self-limiting. 
This would correspond in a food web to a set of species that do not interact with 
one another but have stable, self-limiting populations. 

Next, Gardner and Ashby (1970) defined connectance as the percentage of 
nonzero off-diagonal elements. For a given connectance, they filled the matrix 
with random numbers drawn uniformly from the range -1.0 to 1 .O, constructing 
a system with arbitrary positive and negative linkages. For each such randomly 
constructed matrix, Gardner and Ashby (1970) calculated local stability, the 
tendency for populations to return to equilibrium values following a small 
perturbation in numbers. The proportion of randomly constructed matrices that 
were stable for a given matrix size was then plotted against connectance. 

For all the matrix dimensions they investigated, stability decreased with 
increasing connectance, a direct contradiction of MacArthur (1 955) and Elton 
(1958). Not only did stability decrease with connectance, but the larger the 
matrix, the steeper the decrease (Figure 10.2). For very large matrices, Gardner 
and Ashby (1970) suggested there may be some critical threshold of connect- 
ance, above which complex systems will be unstable. 

May (1972, 1973) generalized their results and applied them specifically to 
ecological systems. He showed that as the number of species becomes large, 
there is indeed a critical limit to connectance, although that limit depends in 
part on a, the average interaction strength in the community matrix. The 
assemblage will usually be stable if 
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where a is the average interaction strength, S is the number of species, and C is 
the connectance. 

These early food web simulations do not conform strictly to the null model 
definition given in Chapter 1. For one thing, these were not stochastic food web 
models. Although the coefficients for the community matrix were assigned 
randomly, the criterion of stability was entirely deterministic. Moreover, the 
simulation results were never compared with empirical data. Nevertheless, the 
stability-complexity hypothesis was so thoroughly engrained in the ecological 
literature (Goodman 1975) that these simulations served as an important null 
hypothesis that described the behavior of systems with arbitrary linkages. 

Constraints and Biological Realism 

What was the response to the finding that model stability decreased with 
complexity? The common criticism was that the models were "too null." In 
other words, the simulations included communities that were not biologically 
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Figure 10.2. Relationship between the probability of stability and the connectance of a 
web of size 4, 7, or 10. Note that as connectance is randomly increased, stability de- 
creases. This early null model contradicted conventional wisdom about stability-com- 
plexity relationships. From Gardner and Ashby (1970). Reprinted with permission 
from Nature 228:784, Figure I .  Copyright O 1970, Macmillan Magazines Limited. 
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reasonable. For example, if the community matrix is to represent a real commu- 
nity, the equilibrium population sizes must not only be stable, they must also be 
greater than zero. Gardner and Ashby (1970) did not impose this constraint of 
"feasibility" on their simulations. Roberts (1974) imposed the constraint, and 
his results suggest that feasible matrices tend to be stable, although his simula- 
tions did not directly vary connectance. However, Roberts's (1974) choice of 
parameters was restricted. and his results may not be general (Gilpin 1975; Goh 
and Jennings 1977). 

A second criterion for a "biologically reasonable" simulation is that it obey 
basic principles of thermodynamics and energy transfer, which dictate that 
energy transfer from prey to predator is never 100% efficient. This restriction 
means that the magnitude of losses to the prey population must be greater than 
the corresponding gains to the predator population. DeAngelis (1975) built 
model food webs that incorporated energy transfer, imposed a hierarchical food 
web structure, and assumed that higher trophic levels were strongly self-damp- 
ing. He also incorporated donor control, in which predators have only a limited 
ability to control their prey. These restrictions correspond to only a small subset 
of possible food web structures. When these constraints were imposed and 
coefficients were randomly assigned, stability sometimes increased with 
complexity. 

Still another biologically reasonable constraint was that trophic loops not be 
allowed. In such a loop, species A eats species B, B eats C, and C eats A. The 
stability of tnodels that forbid loops can increase with increasing species 
richness (L,awlor 1978). Although the early food web literature characterized 
these trophic loops as biologically unreasonable (Lawlor 1978; Pimm 1982), in 
fact they are quite common (Martinez 1991; Polis 1991), particularly for 
predators with size-structured populations or complex life histories (Polis et al. 
1989). Thus, to some extent, modeling efforts were guided by preconceived 
ideas a b o ~  t the structure of food webs in nature. 

Monte Carlo Modeling Strategies 

Even in a simple food web, it is impossible to evaluate systematically all 
combinations of interaction coefficients. The Gardner and Ashby (1 970) method 
has been used effectively to examine the general properties of other food web 
models. A common strategy has been to define the model and restrict either the 
sign or the range of values possible for the interaction coefficients. Within these 
constraints. the interaction coefficients are then chosen randomly and the 
mathematical stability of the resulting model is assessed. This process is re- 
peated for a large set of community matrices. The result is an estimate of the 



proportion of models that are stable for a small, but random, subset of possible 
coefficients. 

These analyses have revealed a bewildering array of possible answers to the 
stability-complexity question, although a few generalizations are apparent 
(Pimm 1982). The key elements determining stability in community matrices 
are often the diagonal or self-limiting elements. Donor-control equations, 
which characterize many real food webs (Hawkins 1992), tend to be more stable 
than Lotka-Volterra equations (Pimm 1982). Different answers to the stability- 
complexity question also arise if one uses the criterion of global stability, local 
stability, or species deletion and addition stability (Pimm 1984b). 

The early simulation work on food web structure also prompted a search for 
empirical patterns. In particular, May's (1972) simple equation (10.1) was seized 
upon as a new empirical rule for community structure. If interaction strength is 
constant, then the product of S and C should be constant in stable assemblages. 
Thus, if mathematical stability is important in determining food web structure 
in the real world, a graph of connectance versus species richness should form a 
hyperbola. However, the search for this pattern seems premature unless the 
relationship between S and C in assemblages that are not dynamically con- 
strained has been studied. Later in this chapter, we examine null models of the 
relationship between connectance and species richness that do not impose 
dynamical constraints but nevertheless predict a hyperbolic relationship. 

NULL MODEL ANALYSES OF THE COMMUNITY MATRIX 

The mathematical definition of local stability has been difficult to test in 
nature; small, controlled perturbations are difficult to achieve in field experi- 
ments and hard to recognize in time series of fluctuating populations. A more 
indirect approach is to take empirical community matrices and compare their 
properties with randomized matrices that are not subject to any dynamical 
constraints. The community matrix requires estimates of a,,, the per capita 
effect on the growth rate of the population of species j caused by a small 
increase in the population of species i .  In the absence of direct experimental 
manipulation, these coefficients can be estimated from resource utilization data 
(Levins 1968) or from multiple regression analyses in which the abundances of 
the component species are measured at different times (Schoener 1974d; 
Crowell and Pimm 1976). 

Both methods have problems. As discussed in Chapter 4, overlap in resource 
use may or may not reflect competition (Sale 1974), and the estimates may be 
biased if the true niche overlaps are multidimensional (May 1975b). Regres- 



sion estimates may also be biased and confounded by the presence of habitat 
heterogeneity (Rosenzweig et al. 1984; Rosenzweig and Abramsky 1985; 
Abramsky et al. 1986). Still, in the absence of experimental manipulation, these 
measures do provide some information about the nature of species interactions. 
Although the theory behind these concepts has been developed for predator- 
prey food webs, most of the data have come from studies of competitive 
interactions within a single trophic level, perhaps because overlaps within a 
single trophic level are easier to estimate quantitatively. 

Lawlor (1980b) presented an ambitious null model analysis of the com- 
munity matrix. His study asked two questions: first, is local (Lyapunov) 
stability important in real communities? If so, then the observed community 
matrix should be more stable than a corresponding set of randomized matri- 
ces. This is a different issue from that of simply establishing whether or not 
the observed matrix is stable. Second, if local stability is relevant to com- 
munity structure, what makes observed communities more stable than anal- 
ogous random communities? 

Lawlor ( 1980b) analyzed 11 overlap matrices calculated by Cody (1974) for 
bird communities. The symmetric overlap matrices were based on observations 
of habitat, vertical foraging range, and feeding pattern. The stability of each 
matrix was measured as the minimum eigenvalue, which must be greater than 
zero for persistence. By this criterion, 9 of the 11 communities were stable. 
However, relative stability, as measured by the size of the eigenvalue, de- 
creased with increasing species richness, in accord with May's (1972) result. 
Nevertheless, observed eigenvalues were always larger than eigenvalues for 
randomized c:ommunities (Figure 10.3). The interpretation of this result is a bit 
ambiguous, because some of the observed stability was a mathematical conse- 
quence of using a symmetric overlap index (May 1975b). On the other hand, 
this property was present in the randomized matrices as well. 

A more powerful method is to directly randomize the resource utilization 
data, rather than rearrange the resulting competition coefficients. For this 
analysis, Lawlor (1980b) used the lizard resource utilization data of Pianka et 
al. (1979). He reshuffled the data with four randomization algorithms, all of 
which are discussed in Chapter 4. As in Cody's (1974) bird communities, 
observed stability decreased with increasing species richness, but was greater 
than expected stability generated by the null model. Average a (interaction 
terms) was also significantly lower than expected, and relative stability de- 
creased with increasing average a and with increasing variance of a. 

These patterns are important because Levins (1968) had suggested that 
coevolution should lead to a decrease in a variance. However, the observed a 
variances did not differ from expected except under RA1, the most liberal 
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Figure 10.3. Relationship between species number and minimum eigenvalue of the 
community matrix, a measure of local stability. Solid circles indicate observed bird 
communities (Cody 1974). The mean, standard deviation, and range of the eigenvalue 
are also shown based on 100 randomizations of the observed community matrix. Com- 
munities with more species had lower stability, in accord with Gardner and Ashby's 
(1970) results. However, the observed community matrix was always more stable than 
randomized matrices of the same size. Reprinted by permission of the publisher from 
Lawlor, L. R. 1980. Structure and stability in natural and randomly constructed com- 
petitive communities. American Naturalist 11 6:394408. Copyright O 1980 by The 
University of Chicago. 

simulation routine. Lawlor (1980b) concluded that neighborhood stability was 
important in local community structure, and that competition had shaped 
communities by reducing the average overlap (though not the variance) be- 
tween competitors. 

Hallett (1991) used a similar analysis of community matrices for six small 

mammal communities for which interaction coefficients had been estimated by 
the regression method. He considered not only local stability, but also global 
stability (the tendency to return to equilibrium following a large perturbation) 
and resilience (the return time to equilibrium). He also measured the commu- 
nity covariance (Vandermeer 1972) and the presence of indirect pathways 
(Lawlor 1979). These pathways represent higher-order interactions that cannot 
be predicted on the basis of painvise coefficients (Lawlor 1979; Holt 1984). 
For each matrix, he randomly interchanged two of the coefficients, recalculated 
the community metrics, and then repeated this procedure until all possible 



distinct arrangements of the original matrix were produced. These matrices 
contained only three, four, or nine species, so it was not prohibitive to generate 
all of the matrix permutations. A second, more general set of randomizations 
filled the community matrix with elements chosen from segments of a random 
uniform distribution, representing strong or weak competitive effects. These 
simulations revealed the likelihood of finding indirect competitive pathways as 
a function of the number of species, the magnitude of competitive effects, and 
the structure of the matrix. 

How did the observed mammal communities compare to these simulated 
assemblages'? Both local and global stability were always significantly greater 
than expected, and return times were also unusually short compared to ran- 
domized matrices. Although total species number varied among the different 
assemblages, each community had only three or four competing species. Con- 
sequently, connectance fell as S was increased. However, the average interac- 
tion strength did not differ with S .  This result implies that reduced connectance 
was a major factor that ensured stability of larger assemblages. 

Communify covariance was minimized for only one of Hallett's (1991) six 
assemblages. However, covariance seemed to be attributable to competitive 
structure: five of the six community covariances were negative and associated 
with asymmetrical competitive hierarchies. Finally, the observed matrices dif- 
fered greatly from the simulated in the frequency of indirect pathways. The 
simulated and the randomized matrices had a high percentage of indirect 
pathways, and this percentage increased if the average interaction strength was 
higher. These pathways were relatively uncommon in two of the six real 
matrices arid completely absent in the other four. Thus, observed assemblages 
tended to be relatively stable and resilient. They were also simple, with few or 
no indirect pathways, relatively few directly interacting species, and competi- 
tive hierarchies that usually were linear and asymmetrical (Figure 10.4). 

The patterns revealed by the null model tests of Lawlor (1980b) and Hallett 
(1991) are intriguing, but it may be too great a leap of faith to assess commu- 
nity stability in terms of interaction coefficients, particularly when these are 
calculated from resource utilization data. Abrams (1981) questioned the use of 
resource utilization and the narrow criterion of neighborhood stability for 
analysis of the community matrix, although Hallet's (1991) results seem to be 
robust to the definition of stability. Abrams (1981) also suggested that the 
matrix rearrangements were biased toward revealing stability, and that some 
competitive structure would not be revealed by this method. We agree that in 
the absence of experimental manipulations of density, it may be difficult to say 
much about community stability. On the other hand, even nonexperimental 
overlap matrices contain a great deal of biological information, and the null 
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Figure 10.4. Competitive hierarchies in mammal communities. These linear (A-D) 
and branched (E-F) hierarchies are significantly smaller and more linear than pre- 
dicted by null models. (A) Maine coastal island; (B) Tennessee temperate forest; (C) 
Maryland barrier island; (D) Venezuelan premontane humid forest; (E) North Dakota 
grassland; (F) Chihuahuan Desert. CG = Clethrionomys gapperi; PM = Peromyscus 
maniculatus; MP = Microtus pennsylvanicus; ON = Ochrotomys nuttalli; TS = Tumias 
striatus; PL = Peromyscus leucopus; ZH = Zapus hudsonius; MM = Mus musculus; 
RM = Rhipidomys mastacalis; OCO = Oryzomys concolor; OCA = Oryzomys capito; 
ST = Spermophilus tridecemlineatus; PE = Peromyscus eremicus; PP = Perognathus 
penicillatus; PI = Perognathus intermedius. From Hallett, J .  G. 1988. The structure 
and stability of small mammal faunas. Oecologia 88:383-393, Figure 1. Copyright O 
1988 by Springer-Verlag GmbH & Co. KG. 

model tests can at least establish emergent patterns in the data that are relevant 

to discussions of stability. 

Plant ecologists have been able to make more progress in experimentally 

measuring species effects on one another. The classic tool for studying species 
interactions in plant assemblages is the de Wit (1960) replacement series. In 
these experiments, seeds from a pair of species are planted in different ratios at 
constant density. Short-term measurements of output (growth, biomass, or seed 
production) are compared for species grown at a constant total density in 

monoculture and in various proportions in a two-species mixture. The ratio of 
growth in a mixed-species planting to growth in a monoculture has been 

interpreted as a measure of the Lotka-Volterra competition coefficients (Harper 

1977). 
There are some problems with this approach. The ratio diagrams address 

frequency, not density of competitors (Inouye and Schaffer 1980). They do not 
indicate the temporal dynamics of species interactions (Connolly et al. 1990), 

and they may exaggerate the competitive abilities of large plants, particularly 
in short-term experiments (Grace et al. 1992). Nevertheless, pairwise studies of 
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competitive interactions are the most powerful approach to the study of com- 
munity structure and stability, particularly when all the species in an assem- 
blage have been experimentally tested in pairs. 

Shipley (1993) used a simple null model to examine structure in competitive 
matrices that are derived from de Wit output experiments. In these binary 
competition matrices, the effect of species A on species B is assigned a one if 
species A grows better in mixture than in monoculture. A zero is assigned 
otherwise. Thus, for any given species pair, the two interaction coefficients 
specify four possible outcomes, corresponding to the four theoretical possibili- 
ties of the two-species Lotka-Volterra competition equations (species A wins, 
species B wins, stable coexistence, unstable coexistence). Shipley (1993) 
looked for the presence of "completely transitive" pathways in such matrices. 
In a completely transitive pathway, the species can be arranged in a strict 
hierarchy of competitive relationships, such that species A outcompetes species 
B, B outcompetes C, and A outcompetes C. If C could outcompete A, the path 
would be intransitive. The ecological significance of completely transitive 
pathways is that all species in such a pathway can be competitively excluded 
except for the single competitive dominant. 

For his null model, Shipley (1993) randomly filled the competition matrix 
with ones and zeros, based on their frequency of occurrence in the original 
matrix. For a given frequency of "winning" interactions, the state of each 
coefficient was independent of the state of any other coefficient. The null 
model generated the expected number of pathways of a given length for an 
assemblage with randomly structured competitive hierarchies. 

Shipley (1993) applied this test for transitive pathways to 10 published plant 
competition matrices that were based on de Wit plantings. The results were 
clear-cut: all but one matrix had significantly more transitive pathways than 
predicted by the null model. The finding that competitive interactions between 
species are often organized in linear hierarchies is very similar to Hallett's 
(1991) results for mammal assemblages, even though the null models and 
metrics used were rather different. 

In summary, null model analyses of community matrices have generated 
consistent results for diverse assemblages of plants, mammals, lizards, and 
birds. Most of these matrices are more mathematically stable than predicted by 
chance. Compared to the universe of possible species interactions, those that 
are observed tend to be simple linear hierarchies involving only a small subset 
of species. Interestingly, these patterns are qualitatively in line with the original 
stability-complexity models of Gardner and Ashby (1970) and May (1972). 

How these stability properties relate to the persistence of assemblages in 
nature is another matter entirely. For example, Rabinowitz et al. (1984) used de 



Wit plantings to estimate the competitive abilities of sparse and common 
prairie grasses. Contrary to their expectations, the uncommon species were 
superior, not inferior, competitors. Thus, these grass species were rare in nature 
in spite of, not because of, their competitive abilities. At least in this assem- 
blage, factors other than species interactions, and hence community stability, 
were responsible for relative abundance. 

PERSISTENCE STABILITY AND THE CONCORDANCE 
OF SPECIES RANKS THROUGH TIME 

Although mathematical stability has been difficult to address with field data, 
many empirical studies have explored the idea of community persistence 
(Pimm 1984b)-the tendency for species composition and rank abundances of 
species to remain constant through time. Empirical tests of community persis- 
tence have not relied on mathematical stability analyses, but they have been 
interpreted in a consistent theoretical framework. Assemblages for which spe- 
cies rank abundances remain constant through time have been described as 
equilibrial, deterministic, and controlled by strong biotic interactions, whereas 
assemblages in which rank abundances repeatedly change are nonequilibrial, 
stochastic, and not controlled by species interactions (Grossman 1982; Wiens 
1984). In hindsight, these conclusions about underlying forces controlling 
community structure are premature. In particular, a pattern of rank concor- 
dances does not necessarily imply deterministic, biotic interactions (Yant et al. 
1984; Ebeling et al. 1990). Early on, MacArthur (1955) pointed out that 
autecological factors independently stabilizing the abundance of each species 
can generate assemblage stability. However, the temporal pattern of abun- 
dances is important in that it can at least give insight into whether or not 
assemblages are at an equilibrium state. 

Grossman (1982) popularized the analysis of species ranks in a study of 
California tidepool fishes. Tidepools were repeatedly defaunated and sampled 
over a 29-month period. Grossman (1982) found that despite repeated defauna- 
tion, the assemblage returned to a characteristic species composition and rela- 
tive abundance (Figure 10.5). From this pattern, he concluded that the intertidal 
fish assemblage was both resilient and persistent. In contrast, 12 years of 
samples of stream fishes from a single site in Indiana showed no concordance 
of rank abundances through time (Figure 10.6), and Grossman et al. (1982) 
concluded that this assemblage was probably regulated by stochastic factors. 

Perhaps because the nonequilibrium conclusion was unpopular, the second, 
but not the first, of Grossman's studies provoked a series of rebuttals. Critics 



Figure 10.5. Relative abundance of resident coastal tidepool fishes. The height of each 
bar is proportional to the relative abundance of a species collected on a particular sam- 
pling date. Ey Kendall's W, the abundance rankings of the species were significantly 
concordant among censuses. 0 s  = Oligocottus snyderi; Sm = Scorpaenichthys mar- 
moratus; Af = Apodichthysflavidus; Sr = Sehastes rastrelliger; Gm = Gihhsonia 
metzi; Al = Artedius laterali~; Cg = Clinocottus globiceps; Ca = Clinocottus analis, 
Hd = Hexagrammos decagrammos. Data from Table 3 of Grossman (1982). 

complained that guild designations (Herbold 1984) and choice of site, season, 
and sampling methods (Rahel et al. 1984; Yant et al. 1984) exaggerated the 
patterns of variability in this assemblage. The sampling issues raised by these 

critics are probably typical of any study that spans a 12-year period, and 
Grossman et al. (1985) responded effectively to many of the criticisms. 

Important statistical issues were raised as well. Grossman (1982; Grossman 
et al. 1982) used Kendall's Was a statistical test of rank concordance. For this 
test, the null hypothesis is that different orderings of species rank abundances 
are equally probable from one year to the next. The alternative hypothesis is 
that ranks are unusually concordant among years. One problem with applying 
Kendall's W to assemblage data is that the test is sensitive to sample size (Rahel 
et al. 1984). In particular, if many rare species are included in the analysis, the 
test will often reveal concordance, even though there may be important shifts in 
rank abundance of the more common species. This is not necessarily an artifact. 
Indeed, one of the critical questions in studies of community stability is why 
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Figure 10.6. Relative abundance of common Indiana stream fishes. The height of each 
bar is proportional to the relative abundance of a species collected on a particular sam- 
pling date. By Kendall's W, the abundance rankings of the species were not signifi- 
cantly concordant among censuses. Ns = Notropis spilopterus; Pn = Pimephales 
notatus; Eb = Etheostoma blennoides; Hn = Hybognathus nuchalis; Na = Notropis 
atherinoides; Nc = Notropis chrysocephalus; Ec = Etheostoma caeruleurn; Eb = 

Ericymba buccata; Ca = Campostoma anomalum; Nu = Notropis umbratilus. Data 
from Table 4 of Grossman et al. (1982). 

rare species never become widespread and abundant. If assemblages are care- 
fully defined a priori, and sample-size effects are examined, rare species need 
not bias the test. 

A second difficulty with Kendall's W is that the test results are sensitive to 
the underlying species abundance distribution (Jumars 1980). For this reason, 
Jumars (1980) recommended testing the data against an appropriate sampling 
model that treats fluctuations in relative abundance as sampling error. The test 
is a simple chi-squared analysis of a species x time table, in which each entry 
is the number of individuals sampled of a particular species. The null hypothe- 
sis is that all the samples are drawn from the same species abundance distri- 
bution. The alternative hypothesis is that the samples come from different 
distributions, causing relative abundances to change through time. The test 
may be problematic because individuals are rarely sampled independently of 
one another in field studies. Pooling collections and treating the data as in- 
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Figure 10.7. Proportional similarity between censuses of coral reef fishes. Similarity is 
higher when species are organized into guilds (right hatching) than when they are 
counted individually (left hatching), but this is a sampling effect found in random 
guild assignments. Horizontal lines are means, vertical lines are ranges, and vertical 
bars are standard errors. From Sale, P. F., and J. A. Guy. 1992. Persistence of commu- 
nity structure: what happens when you change taxonomic scale? Coral Reefs 11:147- 
154, Figure 1. Copyright O 1992 by Springer-Verlag GmbH & Co. KG. 

dependent may greatly inflate the Type I error (Kramer and Schmidhammer 
1992), making the test overly sensitive to minor fluctuations in abundance. 

Other null models have been used to examine temporal changes in assem- 
blage structure. For example, Sale and Douglas (1984) found that the species 
composition of Australian coral reef fish assemblages varied greatly through 
time, so that similarity indices between consecutive samples were usually low. 
In comparison with a null model, species associations changed substantially 
from census to census (Sale and Steel 1989). Sale and Guy (1992) explored the 
possibility that assemblage structure was obscured by a dilution effect, and 
postulated that species classified into ecological feeding guilds might reveal 
more temporal concordance in composition. Similarity indices at the guild 
level were indeed higher than for the total set of species. However, this appears 

to be entirely an artifact of sample size, because random assignment of species 
to pseudoguilds yielded comparable similarity indices (Figure 10.7). 

Ebeling et al. (1990) built several null models that directly evaluated the 
behavior of Kendall's W. Their data consisted of annual estimates of abundance 
for a guild of five species of surfperches that inhabited rocky subtidal reefs off 
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the California coast. Kendall's W indicated a high degree of concordance in 
rank abundances, with one species (Embiotoca jacksoni) retaining first rank in 
12 different censuses. Random census data were constructed by generating 
artificial population tracks for each species. Each species abundance was 
allowed to change according to a proportion drawn uniformly from a -1.0 to 
1.0 range, subject to constraints in four different null models. 

Models 1 and 2, which retained autecological population limits for each 
species, typically generated large, statistically significant values of W, and 
there was a substantial probability (0.21 and 0.35, respectively) of always 
finding the same species in the first rank. Models 3 and 4, which permitted 
more violent fluctuations in species abundance, had substantially lower values 
of Kendall's W. The analyses of Ebeling et al. (1990) demonstrate that deter- 
ministic species interactions need not be invoked for assemblages in which 
species rank abundances are strongly concordant through time. 

Finally, Evans (1988) took a multivariate approach to analyzing changes in 
community structure through time. Grasshopper assemblages in six tallgrass 
prairie sites were sampled by sweep net from 1982 to 1986. Evans (1988) used 
a detrended correspondence analysis to ordinate the relative abundances of 
species at each site. In this analysis, assemblage structure appeared as a set of 
six connected vectors when plotted on the first two axes of the ordination. 
Next, Evans (1988) adapted a null model by Kareiva and Shigesada (1983), 
which was originally used to describe insect movement as a random walk in 
two-dimensional space. Observed vector lengths and angular displacements 
were randomly sampled to construct a correlated random walk in two-dimen- 
sional space. The squared displacement from an initial position increased with 
time in this null model. In contrast, the observed vectors for the grasshopper 
assemblages were steady or slightly decreasing across years (Figure 10.8). The 
results suggest that changes in the frequencies of different species were less 
than expected by chance. However, the patterns are difficult to interpret, 
because the detrended correspondence analysis obscures the pattern of change 
for individual species and because the null model of random change in commu- 
nity structure is not based directly on changes in abundance of individual 
species. 

In summary, a variety of statistical tests and null model procedures reveal a 
substantial amount of concordance in assemblage structure through time. Some 
of this concordance may simply reflect the lifespans of the component species 
(Connell and Sousa 1983), but most studies have been long enough for substan- 
tial population turnover to occur. Lawton and Gaston (1989) argued that most 
assemblages of organisms show this pattern; Eric R. Pianka (personal commu- 
nication in Pimm 1984b) suggested that, with the exception of successional 
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Figure 10.8. 'Temporal change in community structure of prairie grasshoppers com- 
pared with a null model of random change. The x axis is the number of consecutive 
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sada (1 983). Analyses are shown with (A) and without (B) Phoetaliotes nebrascensis, 
the numerical dominant in the assemblage. From Evans (1988), with permission. 
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systems, most assemblages of organisms will be stable during the lifetime of an 
ecologist. Yet, there is a growing literature suggesting that many assemblages 
may not be in an equilibrium state (Rotenberry and Wiens 1980; Sale and 
Douglas 1984; Boecklen and Price 1991). 

In many communities, certain species are persistent but chronically rare, 
and it remains an important challenge to understand why this is so (Rabin- 
owitz 1981). Larger-scale null models of species composition that incorpo- 
rate regional source pools and colonization potential (Cornell and Lawton 
1992) may be necessary to complement small-scale null models of popula- 
tion change for an understanding of temporal constancy of species 
assemblages. 

PATTERNS OF FOOD WEB STRUCTURE 

Null models have been frequently used to quantify and describe general food 
web pattems. These analyses have used a large database of published webs, 
initially compiled by Cohen (1978) and expanded by Briand (1983) and by 
Briand and Cohen (1987). This compendium of published webs is important 
because it forms the basis for the conventional wisdom of how food webs are 
organized in nature (Figure 10.9). 

However, the compiled webs suffer from some serious, perhaps debilitating, 
distortions. The major problem with the compiled webs is that they often lump 
taxa into "trophic groups." This lumping may represent an attempt to depict 
only the important interactions in the food web, but it may also reflect artistic 
convenience (Paine 1988) and taxonomic biases against invertebrates and 
small-bodied organisms (Pimm 1982). Lumping in published food webs is not 
random and is almost always concentrated near the base of the food chain. This 
introduces a systematic bias into the webs that may distort basic food web 
pattems. For example, Cohen (1977) found that the ratio of the number of prey 
species to the number of predator species in webs was often 3:4. Such ratios 
arise from stable Lotka-Volterra food webs with apparent competition between 
prey species via shared enemies (Mithen and Lawton 1986; see Chapter 7 for 
tests of the related hypothesis that predator and prey uhundances are relatively 
constant). But the ratio may simply represent differential lumping of prey 
categories (Pimm 1982), and is not predicted by other simple theories of 
community development (Glasser 1983). 

For now, we accept the food web data "as is" and show how null models 
have been used to elucidate nonrandom patterns in the webs. We review null 
model tests of three food web pattems: trophic chain length, interval webs, and 
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Figure 10.9. A catalog of features typically observed in published food webs. Features 
"not usually observed often represent comparisons with null models. From Pimm 
(1982), with pelmission. 

connectance. We conclude by summarizing recent controversies over the real- 
ity of these patterns and new directions in food web analysis. 

Is There a Limit to the Number of 
Trophic Links in an Assemblage? 

Considerations of the ecological pyramid of numbers (Elton 1927) and the 
inefficient transfer of energy from one trophic level to the next (Lindemann 
1942) suggest that energetic constraints may limit the number of trophic levels 
in a web. Alternatively, food chain length may be limited by body size and 
design constraints on predators (Pimm 1982, 1984a). Optimal foraging princi- 
ples also predrct that species should forage low in the food web (Hastings and 
Conrad 197!>), which would lead to short food chains. Finally, short food chains 
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may be more stable than long ones and reflect dynamic constraints of the sort 
predicted by Gardner and Ashby (1970). 

But a simpler (null) explanation is that there is no biological or mathematical 
significance to observed chain lengths and they simply follow the expected pattern 
for a set of randomly linked species. Before we can decide whether observed food 
chains--which typically have two or three links (Pimm et al. 1991hare  unusually 
short, they must be compared to an appropriate null model. 

Pimm (1980a) constructed random food webs subject to some simple con- 
straints. His webs retained predator and prey numbers, ensured that every 
predator consumed at least one prey species (and that each prey species had at 
least one predator), and did not allow for loops within the same trophic level. 
By retaining observed trophic levels, the null model may have incorporated 
some important structure it was trying to detect. This would cause the simu- 
lated webs to be more similar in appearance to the observed webs, and in that 
sense the test for food chain length was conservative. 

For a set of 14 published webs, Pimm (1980a) found that observed chain 
lengths were typically shorter than expected. The patterns for any single web 
often could have arisen by chance, but the consistent result across the set of 14 

webs was highly improbable. These tests also revealed that omnivory (feeding 
on more than one trophic level) was relatively uncommon and that when it did 
occur, it was usually between adjacent trophic levels. 

These conclusions were limited to the data in hand; for example, observed 
levels of omnivory may be considerably higher in zooplankton food webs 
(Sprules and Bowerman 1988). Other sorts of data are needed to distinguish 
among the alternative mechanisms that have been proposed to account for short 
chain lengths (Pimm 1982), but these null model tests did suggest that chain 
lengths in published webs were unusually short. 

Do Food Webs Exhibit Internal Structure? 

Cohen (1978) noted an interesting property of predators at the same trophic 
level in a food web. If the predators are ordered on the basis of the prey species 
they consume, the overlaps in diet among the set of predators can sometimes be 
represented in a one-dimensional graph. These "interval food webs" corre- 
spond to a set of predators that partition prey species in a simple fashion. Cohen 
(1978) suggested that this nonrandom pattern indicated niche differentiation 
among the predators and that the major axis of ecological differentiation was 
one-dimensional. 

Cohen (1978) tested for the presence of interval food webs with a set of six 
null models based on the randomization of the food web matrix. These models 



placed fixed or probabilistic constraints on either the row, column, or total sums 
of the food web matrix. Cohen's (1978) models were more "null" than Pimm's 
(1980a) because they allowed for loops and may even have included predators 
with no prey and prey with no predators. There were usually more observed 
interval food webs than expected by chance for all six of the models, perhaps 
providing support for simple models of niche overlap. 

However, other null models of food webs do not give this same result. Yodzis 
(1982) tested for the presence of "cliques," a form of ecosystem compartmen- 
talization that is similar to the interval graph. Each species pair in a clique has 
at least one prey species in common, and the dominant clique is one that 
contains no other clique. Cliques in a food web correspond roughly to trophic 
guilds, although they tend to contain more species than the typical guild. 

Yodzis's (1081) null model for testing for cliques was more restrictive and 
complex than Cohen's (1978) models. Yodzis (1981) established the parame- 
ters n (the rmmber of primary producer species), p (production per primary 
producer), andl e (ecological efficiency of consumers). Beginning with the set 
of n primary producers, consumers were added sequentially to the community. 
Each consumer was assigned to a random set of producer species and removed 
a randomly chosen fraction of the remaining production, reminiscent of the 
mechanics of MacArthur's (1957) broken-stick model (see Chapter 3). This 
process was repeated for higher trophic levels until energetic constraints for- 
bade the addition of more species. For each real web, constants were fitted so 
that the null web could plausibly be viewed as having been chosen at random 
from the universe of all possible webs with the parameters n,  p, and e .  

Compared to these null webs, real food webs had very few dominant cliques, 
even though other properties, such as predatortprey ratios and number of 
trophic links, were well fit by this model (Yodzis 1981). These constraints on 
the number of dominant cliques in turn seemed to account for the presence of 
interval graphs detected by Cohen (1978). Perhaps these elements of internal 
structure represent "small, functionally coevolved guilds or component com- 
munities," which Colwell(1979) suggested as the focus of study in community 
ecology. But neither Yodzis (1981) nor Cohen (1978) provided satisfying 
biological explanations for these units of organization that are inspired by 
graph theory. 

What Is the Relationship Between 
Species Richness and Connectance? 

Dynamical constraints (Gardner and Ashby 1970; Rejmdnek and Star9 1979) 
suggest that connectance should decline with increasing species richness, per- 
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Figure 10.10. Relationship between minimum possible connectance and the number of 
species in a community. The curve represents the hyperbolic function Cm = 2. "Com- 
munity webs" were defined as sets of organisms selected from a habitat without regard 
to their trophic relationships. "Sink webs" were constructed by selecting a set of preda- 
tors and tracing the connections to their prey. "Source webs" were constructed by se- 
lecting a set of prey and tracing the connections to their predators. From Auerbach, 
M. J. Stability, probability, and the topology of food webs. In: Ecological Communi- 
ties: Conceptual Issues and the Evidence. D. R. Strong, Jr., D. Simberloff, L. G. 
Abele, and A. B. Thistle (eds). Copyright O 1984 by Princeton University Press. Re- 
printed by permission of Princeton University Press. 

haps in hyperbolic fashion if interaction strength is held constant (May 1972). 
The pattern is certainly common in published food webs (Rejmanek and Star? 
1979; Pimm et al. 1991; but see Winemiller 1989). But connectance could also 
decrease if each species fed upon the same number of prey species, regardless 
of web size (Pimm 1980b), which seems biologically reasonable. 

Auerbach (1984) noted that for a web of rn species, a minimum connectance 
of 2/m is necessary to maintain at least one link for each species in the web; this 
constraint by itself can generate a hyperbolic relationship between species 
richness and connectance. A similar bound on maximum connectance arises if 
predator identities are maintained and looping is forbidden, as in Pimm's 
(1980a) null models. Published food webs nicely fit these constraining curves 
(Figure 10.10). 

Kenny and Loehle (1991) calculated the expected connectance for a web 
with S species and k links. The only constraint on this expectation was that all 
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Figure 10.1 1. Relationship between connectance and species number for several 
aquatic ecosystems. The null model is the expected connectance for a randomly con- 
nected web of a given number of species. The null model with sampling error assumes 
that links in the observed web are sampled in proportion to their relative strength. 
From Kenny imd Loehle (199 I), with permission. 

species had ah least one link; loops were not disallowed. Connectance de- 
creased with increasing S in this model, but the observed connectances in 
Briand and Cohen's (1 987) compiled webs were too low to be fit by this model. 

However, this comparison is valid only if the entire web is known. In reality, 
the published webs represent a small and probably nonrandom subset of the 
true web structure. Thus, a null model for connectance needs to incorporate not 
only the observed numbers of species and links, but also some element of 
sampling error. Such a model is difficult to formulate, because the links that are 
missing from an observed food web are not random. Missing food web links do 
not simply represent rare species, either, because most top predators are rare, 
but they are usually well represented in food webs. 

Instead, Kenny and Loehle (1991) argued that the "missing links" in pub- 
lished food webs probably represent very small energy transfers, corresponding 
to prey items that rarely occur in a predator's diet. Kenny and Loehle (1991) 
explored the use of energy transfer in food web sampling by analyzing food 
webs for several large aquatic systems that had been compiled by Robert E. 
Ulanowicz :jpecificaIly for the purpose of quantifying energy transfers. The 
plot of ranked link sizes (biomass or carbon transfer) was well fit by a geomet- 
ric series, in which each link is some constant fraction of the size of link before 
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it. This fraction ranged from 0.75 to 0.95 in the observed data sets. Randomly 
sampling from this distribution yielded an expected connectance for a web that 
has been constructed with sampling error. The connectance in these truncated 
webs provided a good match to the observed values (Figure 10.1 1). This null 
model effectively accounted for observed connectance by assuming only that 
the underlying linkage strengths followed a log series and that observed web 
links were randomly sampled in proportion to link strength. The quantitative 
linkages were important only in determining sampling biases, not in influenc- 
ing web stability. These findings suggest that linkage strength is a key to 
understanding both the biological (Paine 1992) and the statistical (Ulanowicz 
and Wolff 1991) properties of food webs. 

Are Food Webs Real? 

In a special feature section of Ecology, Paine (1988) provocatively questioned 
the biological reality of published food webs. He argued that most webs have 
been so overly simplified or "sanitized" that it is premature to make any claims 
about general food web patterns in nature. He also emphasized that only a 
direct study of interaction strengths (Paine 1992) will reveal the forces that 
organize assemblages, and that qualitative depictions of interaction sign (+ or -) 
will not uncover critical linkages such as keystone species (Paine 1966). 

Perhaps in response to his criticisms, several authors have recently published 
very detailed food webs and compared the patterns in those webs to the 
generalizations derived from previous web catalogs. The new webs are com- 
plex and do not conform to previous generalizations. They provide strong 
support for Paine's (1988) contention that published catalogs are inadequate 
and do not represent true web structure. 

For example, Polis (1991) described a complex, species-rich food web for a 
desert community. This web included 174 species of vascular plants, 138 
species of vertebrates, over 55 species of arachnids, and an estimated 2,000- 
3,000 species of other invertebrates and microorganisms. Even using a highly 
simplified subweb, Polis (1991) found an average of seven trophic links (Fig- 
ure 10.12), compared to the "expected" two or three links in published 
webs. Although omnivory is claimed to be uncommon in food webs, 78% of 
the species in the desert web were omnivorous. Polis (1991) argued that 
lumping and deletion of biological species, inadequate dietary information, 
and a failure to recognize the presence of age structure and looping compro- 
mise the quality of most published webs. 

Martinez (1991) found similar patterns for a well-resolved aquatic food web. 
For the 93 trophic taxa (most of which were resolved to the species or genus 
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Figure 10.12. Trophic interactions of a few predaceous arthropods in a desert food 
web. This subweb represents a small fraction of all interactions. An arrow returning to 
a taxon indicates cannibalism. Reprinted by permission of the publisher from Polis, 
G. A. 1991. Complex trophic interactions in deserts: an empirical critique of food-web 
theory. American Naturalist 138:123-155. Copyright O 1991 by The University of 
Chicago. 

level) of a Wisconsin lake, there were an average of more than 10 trophic links, 
with more links per species and more species at higher trophic levels than in 

other published webs. Other species-rich assemblages that show "atypical" 
trophic links and high levels of omnivory include estuarine (Hall and Raffaelli 
1991) and tropical (Winemiller 1989) aquatic food webs. Even the celebrated 
hyperbola of connectance and species richness may not be valid (Martinez 
1992). For at least one large food web (Winemiller 1989), connectance actually 
increased with increasing species richness (Figure 10.13). 

Proponents of food web theory have acknowledged the limitations of pub- 
lished food webs (e.g., Pimm and Kitching 1988; Pirnm et al. 1991; Schoenly 
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Figure 10.13. An increasing relationship between connectance and species richness for 
34 food webs derived from four tropical fish study systems. Circles represent all links, 
and triangles represent strong links. Solid symbols are top-predator sink webs. Re- 
printed by permission of the publishers from Winemiller, K. 0. 1989. Must connect- 
ance decrease with species richness? American Naturalist 134:960-968. Copyright O 
1989 by The University of Chicago. 

and Cohen 1991) but have suggested that the revealed patterns still tell us 
something important about how communities are assembled. One strategy to 
deal with poorly resolved food webs is to aggregate the data and then examine 
scale-invariant properties of the resulting webs (Sugihara et al. 1989; Havens 
1992). Some food web properties do not change with aggregation, suggesting 
they are not sampling artifacts. However, because links are not randomly 
deleted from food webs initially, this aggregation does not remove biases that 
are inherent in simplified food webs (Kenny and Loehle 1991). On closer 
analysis, many of the web statistics do seem to be sensitive to aggregation 
(Martinez 1993a, b). 

We think the arguments over scale-invariant properties of food webs are 
uninformative without comparison with a null model. Other constant metrics in 
community ecology, such as body size ratios of 1.3 (Chapter 6) and species- 
area slopes of 0.26 (Chapter 8), frequently appear but in no way imply a single, 
underlying cause. On the other hand, the fact that many web metrics are 
correlated with the number of species does not mean that the patterns are purely 
sampling phenomena. Only by comparison with a null model can we decide if 
a certain web metric is unusually large or small. 

Along these lines, it will be especially interesting to compare food web 
properties of these new species-rich webs with null models. It might still be the 
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case that the chain lengths in Polis's (1991) and Martinez's (1991) webs are 
unusually short, given the number of species they contain. Simplification of a 
food web is not necessarily a bad thing, particularly if the reduced web is the 
one that contains the strong linkages. But this aggregation can only be made 
when all links are thoroughly investigated and their strengths quantified. Per- 
haps when this is done, the resulting webs will appear like the ones in the 
current literature catalog, and we will have come full circle on the issue. But in 
the meantime, we agree with Paine (1988) that it is premature to say much 
about the underlying patterns of food web structure until we develop a large 
catalog of more detailed webs. It may be difficult to apply null models to such 
webs, however, because of constraints on computing time. 

In summary, null models have had a long history in food web analysis and 
have revealed important nonrandom patterns. But, as Sale (1984) has pointed 
out, our vertebrate sensory systems predispose us to organize and simplify 
patterns in nature. It may turn out that the existing catalog of food webs is more 
a reflection (of past perceptions of nature than an indicator of true structure. 

RECOMMENDATIONS 

In contrast to other areas of community ecology, null models have figured 
prominently in food web analysis, both in formulation of theoretical expecta- 
tions and in testing existing food web patterns. Many food web patterns cannot 
be explained simply by the number of species or links in the collection. 
However, recent critical reviews suggest that the set of existing food web data 
is empirically flawed; null model tests are needed for new species-rich webs 
that more accurately reflect the links and interaction strengths in nature. When 
such data a.re available, the null models of Pimm (1980a) and Kenny and 
Loehle (1991:1 are appropriate for detecting pattern. 




